Knowledge Acquisition for the Onboard
Planner of an Autonomous Spacecraft

Benjamin D. Snith! and
Karma Rajan?and
Nicola Muscettola?

' Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove DriveM/S 525-3660
Pasadena, CA 91 109-8099
smith@aig.jpl.nasa.gov
*NASA Ames Research Center
Mail Stop 269-2
Moffett Field, CA 94035
{kanna,mus}@ptolemy.arc.nasa.gov

Abstract. Deep Space Oue (IDS1) will be the first spacecraft to he con-
trolled by an autonomous closed loop system potentially capable of car-
rying out a complete mission with minimal commanding from Earth.
A major component of the autonomous flight software is an onboard
planner/scheduler. Based on generative planning and temporal reason-
ing technologies, the planner/scheduler transforms abstract goals into
detailed tasks to be executed within resource and time limits. This pa-
per discusses the knowledge acquisition issues involved in trausitioning
this novel technology into spacecraft flight software, developing the plan-

ner in the context of a large software project and completing the work
under a compressed development schedule. Our experience shows that

the planning framework used is adequate to address the challenges of
DDS1 and future autonomous spacecraft systems, and it points to a series
of open technological challenges in developing methodologies and tools
for knowledge acquisition and validation.

1 Introduction

The future of the space programncalls for ambitious missions of exploration
and scientific discovery. Searching for life onMars, Europa and elsewhere in
the solar system and beyond will require the solution of several challenging
technical and organizational problems. A central one is the implementation of
increasingly capable and autonomous control systems to ensure both mission
accomplishment and mission safety [17, 6, 15]. Without these systems missions
will have to be run with the current, traditional approach. This relies on frequent
comtnunication with Earth and teams of human experts guiding step by step
a mission through its tasks and analyzing arid reacting to the occurrence of
malfunctions. The cost and logistics difficulties of this approach, however, are so

high that it cannot be reasonably carried over to tile expected growth of missions
and mission capabilities. Autonomy technology is an answer to these problerns.

The Remote Agent (RA) [12, 13] will be the first artificial intelligence-based
autonomy architecture to reside inthe flight processor of a spacecraft and con-
trol it for 6 days without ground intervention. The mission on which RA will fly
is Deep Space Omne(DS1), the first deep-space mission of NASA's New Millen-
nium Project. RA achieves its high level of autonomy by using anarchitecture
with three components: anintegrated planning and scheduling system (PS) that
generates sequences of actions (plans) from high-level goas, aintelligent execu-
tive (EXEC) that carries out those actions and can respond to execution time
anomalies, and a Model-based Identification and Recovery system (MIR) that
identifies faults and suggests repair strategies. Each module covers a different
function in the architecture and uses a different computational approach One
characteristic however is common to all of them: the reliance on models of the
domain that are largely independent from the task to be fulfilled. These mod-
els alow the module to rely on a much deeper understanding of the structural
characteristics of the domain than possible with classical rule-based approaches,
facilitating model analysis and model reuse. The module achieves its function by
processing the model with a module’s reasoning engine, independent from the
specific application. This processing aso relies on additional heuristics knowl-
edge that guides the engine into making informed decisions during the search
process.

This paper discusses the knowledge acquisition process used for models and
heuristics of the planning and scheduling system (PS) of DS1. We started the
process with an approach to planning knowledge representation [10] that had
been demonstrated in arapid-prototype effort [12]. With DS1 we had to face
additional challenges due to having to develop P’Sin the context of the develop-
ment of the full flight software, to the additional complexity of the domain, to
the compressed schedule for developineut and to tile risk-inanagement require-
ments. Also, architectural solutions internal to RA had to be enhanced due both
to the increase in capabilities that were needed to control a real spacecraft and
to the need to provide sounder software engineering approaches. We will describe
how the knowledge acquisition process was carried out and the strengths and
weaknesses we found in our current approach.

Section 2 deals with the Remote Agent software architecture highlighting the
details of the planner and it's plan representation. Section 3 deals with issues
in knowledge acquisition including references to the spiral development process,
model acquisition and interfaces to external experts. Section 4 deals with the
open issues as a result of the development process including the need for vali-
dation and debugging tools. Finally Section 5 concludes with an outline of the
work undertaken.

2 The Remote Agent and Planner Architectures

(Remote Agent h

Smart
Executive

Mission

Ground
System

Manager

Planner/
Scheduler

v

Yy
Flight hardware

I_Plan Experts rts J { Monitors

Fig. 1. RA architecture

The RA architecture consists of four distinct components (Figure 1), the Plan-
ner/Scheduler, the Mission Manager [11],the Smart Ezecutive (EXEC) [14] and
the Mode Identification and Recovery (MIR) system [16,17]

The execution of plans by the EXEC is achieved by interaction with a Mode
Identification system aud a lower level rea time monitoring aud control compo-
nent. MIR provides the EXEC with a level of abstraction to reason about the
state of the various devices it commands. The monitoring layer takes the raw
sensor data aud discretizes it to the level of abstraction needed by the MIR.
Finally, the control and real-time system layer takes commands from the exec-
utive and provides the actual control of the low level state of the spacecraft. It
is responsible for providiug the low level sensor data stream to the monitors.
Details of the Remote Agent architecture cau be found iu [12, 13].

Planner/Scheduler Ta Device Dnivers

Smart Executive

| Mission Manager

From Ground

Fig. 2. Plauner/Scheduler Architecture

The planner/scheduler (PS) generates a detailed plan of action from a hand-
ful of high-level goals, based on knowledge of the spacecraft contained in a do-
main model. The model describes the set of actions, how goals decompose iuto
actions, the constraints among actions, and resource utilization by the actions

The planning engine searches the space of possible plans for one that satisfies the
constraints and achieves the goals. The action definitions determine tile space
of plans. The constraints determine which of these plans are legal, and heavily
prune the scarch space. The heuristics guide the search in order to increase the
number of plans that can be found within the time allocated for planning.

Figure 2 describes the overall view of the Remote Agent Planner/Scheduler.
The Mission Manager (MM) contains the long term mission plan with goals for
the entire nission. Ground operators caninteract with the MM to modify the
plan by adding, removing or editing goals in the mission plan. The MM also
provides the EXEC with aninterface to the Plauner. When the EXEC requests
a new plan, MM selects a new set of goals from the mission profile, based on
internal way points. It combines this with the initial state provided by the EXEC
and generates a partial plan for the planner. When the EXEC has completed
execution of this plan the cycle is completed when it sends a new request to the
MM for the next planning horizon. For the RA experiment the plan horizon will
consist of two segments each three days long.

2.1 Knowledge Representation of the Planner

The knowledge representation of the planner is distributed among the domain
models, the planner heuristics, the mission profile and the plan experts. The
domain models encode the behavioral aud operational constraints imposed ou
the spacecraft by the mnission and the hardware. The heuristics guide the planner
search to decrease the computational resources needed to find a plan and to
increase plan quality. The mission profile encodes the long term goals and mission
requirements as determined by the ground controllers and mission designers, and
resides in the Mission Managers temporal database. Finally the plan experts are
special-purpose software modules, written and maintained by other teams, with
which the planner interacts to obtain knowledge that cannot be easily encoded
iu the plan model.

Model Representation. The PS uses a hybrid plauning/scheduling represen-
tation that models continuous process on parallel timelines to describe actions,
states and resource alocations. PS provides aso for temporal and parametric
flexibility and uses planning experts.

Plaus consist of severa paralel timelines,each of which consists of a sequence
of tokens. A timeline describes the evolution of a spacecraft state over time,
and the tokens describe those states. For example, consider one timeline that
describes the main engine. If the plan is to start in standby, fire up the engine,
and return to standby, the timeline would have one token for each of those
processes. Each token has a start time, and end tine, and a duration. Each
token can have zero or more arguments (e.g., the thrust level at which to fire
the engine)

The plan model consists of definitions for al the timelines, definitions for
all the tokensthat can appear onthose timelines, and a set of temporal con-
straints that musthold among the tokensin a vaid plan. The planner model is

described in a domain description language (DDL), and is represented as part
of tile planner’s data base also called the Plandb

Temporal constraints are specified in DDL by compatibilities. A compatibility
consists of a master tokenand a boolean expression of temporal relations that
must hold between the master token and target tokens. An example is shown in
Figure 3.

(Define. Compatibility
;3 compats on SEP_Thrusting
(SEP_Thrusting ?heading 7level ?duration)

:compatibility_spec

(AND

(equal (DELTA MULTIPLE (Power)
(+ 2416 Used)))

(contained-by (Constant_Pointing ?heading))
(met_by (SEP_Standby))

(meets (SEP_Standby))))

(Define-Compatibility
;3 Transitional Pointing
(Transitional_Pointing ?from ?to 7legal)
:parameter_functiosn
(?_duration_ <- APE_Slew_Duration (?from ?to ?_start_time_))

(?-legal- <- APE_Slew_Legality (?from ?to ?_start_time_))
:compatibility_spec
(AND

(met_by (Constant-Pointing ?from))
(meets (Constant_Pointing 7to))))

(Define_Compatibility
;; Constant Pointing
(Constant_Pointing ?target)
:compatibility_spec

(AND
(met-by (Transitional_Pointing . ?target LEGAL))
(meets (Constant-Pointing ?target * LEGAL))))

Fig. 3. An example of a compatibility constraintin the Planner model

The first compatibility says that the master token, SEP_.THRUSTING (when
the Solar Electric Propulsion engine is producing thrust), must be immediately
preceded and followed by a standby token, temporally contained by a constant
pointing token, and requires 2416 Watts of power. Constant pointing implies that

the spacecraft isina steady state aiming it's camera towards a fixed target in
space. Transition pointings refer to the slewing activity required by the spacecraft
to move from one pointing to the next. The standby state of SEP implies that
the engine is not thrusting but has not been completely shut off. A plan fragment
based on these compatibilities is shown in Figure 4,

Constant Transition Transition Constant

Pointing(A) Pointing(A,B) Pointing(B,C) Pointing(C)
Constant_Pointing(B)

-7 - - - -

- s /’ \ B
_ -7 S~ ___\- N 7
eéts mel_by o
T meets
met_by meels /tontained;by
. SEP_Standby ’ SEP_Thrust(B,200) | SEP_Standby
%‘v &Ml
equal
——_——— m — - - e e - .- o
| | power2a16w)

Fig. 4. Plan Fragment

DDL provides a high level language for specifying the spacecraft require-
ments in terms of behavioral constraints (e.g., standby follows thrusting) and
operational constraints imposed by mission policies.

Heuristics. Heuristics guide every choice point of the planners search. On each
iteration of the search, the planner chooses an unresolved compatibility con-
straint and a way to resolve it: by constraining an existing token to satisfy the
constraint, adding a new token that satisfies it, or assuming that it will be sat-
isfied by some token in the next horizon. There are other decisions as well, such
as grounding under-constrained argument values.

Method Connect
;» connect only, defer and add are disallowed.
master { Transitional_Pointing;}
target { Constant-Pointing; }

Fig.5. Cycle Avoidance Heuristics

For example, the heuristic in Figure 5 prevents backtracking due to cycling.
The attitude timeline alternates between constant pointing tokens and transi-

tional pointing tokeus. Ouce a constant pointing token is added, it has com-
patibilities that could add transitional pointing tokens, which canin turn add
constant pointing tokens add in finitut. The last heuristic breaks the cycle by
saying that a transitional pointing token cau connect to an existing constant
pointing token, but can never add one.

Mission Profile. The goals for the entire mission are stored in an on-board file
caled the mission profile, which is mmanaged by the Mission Manager. The profile
captures ission operations knowledge, such as when the communications passes
are scheduled, how much fuel is alocated for each segment of the mission, when
various mission phases start and stop, and so ou. The profile also serves as the
primary interface with the ground controllers. The ground teamn commands the
spacecraft at a high level by changing or adding goals to the profile.

Plan Experts. A large software project like the DS1, requires the contribution
of several teams with specialized knowledge. Planning Ezperts are programns
developed and maintained by other teams. They coordinate with the planner
but which are not strictly part of its domainrepresentation.

A prime example is the Attitude control Planning Expert (APE), which
answers queries about whether a giventurn violates pointing constraiuts (i.e
while turning the spacecraft fromn one target to the other will the camera be
exposed to some bright radiation source damaging it in the process ?) and how
long e turn will take. How violation constraints are calculated is completely
opaque to the planner. As a result, separating the plan experts from the planning
model simplifies the knowledge acquisition and software maintenance process.
Quite often, clue to the specificity of these modules, the code is aso reusable
across missions. For instance, much of the code for attitude constraint violation
in APE came from NASA/ESA’s Cassini mission [5].

There are two kinds of plan experts. The first kind answers questions about
constraints. APE is of this variety. The secoud kind of plan expert generates goals
for the planner to achieve. These ou-board goal generators alow the spacecraft
to make autonomous decisions, within certain parameters, based on local infor-
mation. The prime example on DS1 is the on-board navigator, which provides
goals on trajectory related mancuvers and goals for images of nearby celestial
bodies from which NAV can determine the spacecraft position.

The planner asks the goal generators for goals when the planner is ready for
them. The goal generators have no visibility intothe plan, other than whatever
information provided in the request. Whenthe goas are returned, the planner
decides how they will be achieved intheplan, or whether they are achieved
a al. If the plan is over-coustrained, goals canbe rejected based on a global
prioritization schewme.

3 The Knowledge Acquisition Process

Traditionally flight software for a spaceccraft consists only of low level device
drivers, attitude control system and simple sequence execution capabilities.

Commanding done from ground allows the operational and mission con-
straints to be designed and implemented a a later titne, sometimes even after
launch. With on-board autonomy, the design process must take a more com-
prehensive view to the full mission life cycle including from theverybeginning
the modes, operations and expected behaviors of the spacecraftin the domain
models. To accomplish this we used a Spiral Development model.

In the following sections we discuss the knowledge acquisition process and
methodology for the planner and the resulting problems and issues they raised.

3.1 The Spiral Development Process

In a Spiral development [1] for each development cycle, management identifies
subsystem and modules that must be developed, tested, and integrated. Mean-
while, processes and standards are further refined. At the end of each develop-
ment cycle, project teams meet to discuss the obstacles they encountered and the
lessons they learned. This creates a system for tracking problemsand resolutions.

For DS1, this allowed us to work on basic functionalities and understand the
issues involved before tackling more complex functionalities (see [8]). At the
beginning of each spiral, the mission engineers created a baseline scenario that
would exercise the new functionality for that spiral while still requiring the old
functionality. The hardware management team (HWMT) then arranged several
days of knowledge acquisition meetings with tile hardware developers, who would
detail the software requirements for their hardware to work correctly.

Each of the modeling and software development teams sent representatives
to these meetings. The hardware developers presented the baseline behavior for
the upcoming spiral, and the modelers asked questions to dicit further details.
Since each component Of the RA modelsthe hardware at a different level, having
representatives from each team was particularly helpful in identifying interaction
issues across the different levels.

The DS1 Spiral releases were designated R1 through R3. To give the reader
the scope of development that took place, we show the evolution of the planner’
model sizes for eachrevisionin tables 1, 2 and 3.

From the I'S perspective each revision in tile spiral development model in-
volved successively sophisticated constraint modeling of the spacecraft. In the
first revision the model only dealt with simple turns and picture taking for
navigation itnages; more complex issues such as power, thermal modeling were
ignored.In the next revision the modelincluded the modeling the SEP engines
and obtaining more detailed trgjectory informationfrom the [Navigation expert.
The third spiral release added power management, advanced turns, and comet
fly-by related activities.

Subsystem R1|R2[R3
Mission events o 1| 3
Power of Of 2
lou Propulsion 1l 5| 5
Attitude control 3 4| 4
Cominunications ol 1| 2
MICAS 1 1] 6
Beacon experiment| 0 0] 2
RCS system 1 1] 3
Navigation 31 3| 4
Planner/scheduler | 1| 1| 1
Total 1011732

Table 1. Modification of timelines in the model over the spiral development releases

Subsystem R1 R2 . R3
‘rot|Add |Mod|Del| Tot| Add [Mod|Del| Tot
Mission events 0 1 1 5 6
Power 0 0 3 3
lon propulsion I 1 1 12 1 13
Attitude control 4 4 8 6 20 1] 14
Communications 0 3 3 2 2 5
MICAS 3 5 8 14 22
Beacon experiment| 0 0] 4 4
RCS system 1 1 4 1 5
Navigation 6 2 6 3 9
Planner/scheduler 2 2 2
Total 17 41 69

Table 2. Modifications of token types over the spiraldevelopment releases

3.2 Model Acquisition

Model acquisition in each cycle would start with the cognizant system engineer
laying the baseline functionality to be covered, layered ontop of designs of
subsystems already implemented. The modeler for the planning team would
then be required to list the new functionality required and changes to the old.
These would be put into a Problem St atement giviug a broad outline of tasks the
planner wouldbe needed to do for the current cycle, along with specifying any
additional formalinterfacesin the form of inter-process commuuication messages
(see Section 3.4). Teams with interfaces with the planner (especially the EXEC)
would comment and propose design changes and any additional requirements.
After a few iterations of this process, the modeler would update the Token
Dictionary. The token dictionary details the syntax and semantics of each token

Subsysten R1|R2{R3
Mission events 0] 2| 4
|Power 0l of 0
Ion Propulsion 3| 11] 14
Attitude control 2| 11| 16
Communications 0] 31 7
MICAS 3| 320
Beacon experiment| o 0| 4
RCS system o| 0| 2
Navigation 41 31 7
Planner/scheduler | 2| 2| 2
"Total 16| 36|76

Table 3. Modifications of compatibilities in the model over releases

type on al the timelines and forms the primary document for all negotiated
informal interfaces with the EXEC.

This would imply changes to the existing tokens along with timeline and
token additions as necessary. The core task of the model acquisition process
would then be complete and the modeler would then move towards implementing
the design changes. As mentioned earlier (see Section 2.1), this would primarily
involve changes to the domain model, planner heuristics and the mission plan.

In each revision of the Spiral development, approximately eight weeks were
needed for knowledge capture and another eight weeks for model development
and tuning of the planner search.

Issues in Domain Modeling. In modeling for the DS1 mission, we discovered
that a relatively large nummber of modeling tasks were easy to do, given the
syntax and semantics of DDL. In a couple of cases we had to introduce auxiliary
timelines to support the planner’'s reasoning process.

For instance it was necessary to schedule the correct amount of SEP thrust
within a planning horizon. Simply put, this would require computing the du-
ration of each SeEP thrust token and performing asummation over the plan-
ning horizon. To do so however, a somewhat circular approach was needed by
defining a new timeline which would use variable codesignation and propagate
accumulated thrust values based on temporal durations of the SEP thrust to-
kens; something not altogether intuitive. Figure 6 illustrates this situation with
the Max Thrust duration specifying the thrust duration needed in the horizon;
SEP thrust tokensactually performing the thrusting action and Accumulated
thrust tokens showing a running count of the thrust.

As mentioned earlier, with each iteration of the development cycle the planner
models were made consistently more reaistic. Knowledge acquisition from each
spiral cycle effectively ended up affecting the planner’s domain model and it's
heuristics. While syntactic modifications and its semantic interpretation were

Max_Thrust_time(100)

Accumulated Accumulated Accumulated
Thrust(0,40) Thrust(40,80) Thrust(80, 100)

Fig. 6. A plan fragmentimplementing thrust accumulation within a plan horizon

the primary drivers of model development (especially if interface requirements
at the token level were to benegotiated with the EXEC (see Section 3.4)) we
discovered that a major chunk of development time was aligning the heuristics
with the model changes so that planner convergence was possible.

Heuristics. Because of the tight coupling of the domainmodel to the heuris-
tics, changes to the model almost aways require corresponding changes to the
heuristics. This makes it difficult to introduce incremental changes to the model.
Normally, a family of timelines corresponding to a new device or capability can
be added with minimalimpact on other timelines. Most of the constraints are
among the timelines in the family, with a handful of constraints to external re-
sources such as power or spacecraft attitude. However, the new timelines change
the optimal search strategy, and this reguires the heuristics to be re-tuued.

3.3 Unmodeled Activities

Sometimes the ground controllers want to execute mancuvers that do not obey
the flight rules, and are therefore not modeled the planner. For example, they
may want to execute a high-speed turnin order to jar loose a stuck solar panel.
The modelmust provide a way for the ground controllers to execute contingency
maneuvers such as this without uploading a new model. Changing the model
maybe fine for permanent patches, but the tiine and cost needed to develop and
test the patch makes them impractical for one-time emergency maneuvers.

In support of this requirement the model provides a special activity to-
ken that can stand in for any activity the ground wants to execute but is not
otherwise supported by the planning model. The ground controllers insert the
token where they want it in the nission profile. 1t can be scheduled for a spe-
cifictime, or scheduled relative to other events. The activities performed by the
token are specified in a file of timetagged low-level commands that the EXEC
executes at the beginning of the token.

Since the actions executed in the special activity token are not modeled by
the planner. it is possible that they could conflict with planned activities. For
example, the plau could be tryingtohold the spacecraft stillin order to take au
image while the special activity token is executing ahighspeedturn. To avoid

such conflicts, constraints can be specified between the special activity token
and other tokeus inthe plan. In this case, attitude dependent activities would
be disallowed while the special activity token was active. These constraints can
be specified iu the mission profile.

3.4 Interfaces

The interfaces between the planner and other parts of the flight software im-
act the knowledge acquisition and representation. The planner has two main
interfaces. interfaces with plan experts, and interfaces with the Smart Executive
component of the RA.

Plan Expert Interfaces. Negotiating the plan expert interfaces was among
the easiest of the knowledge acquisition tasks. This is largely due to the opaque-
ness of the plan experts to the planuer and vice versa. The bulk of the knowledge
acquisition was in the very first meeting, where the focus was understanding how
the plan expert worked and explaining planuer concepts to the plan expert de-
velopers. In the case of APE, the planningteam needed to understand how to
specify a turn, and what information was needed for APE to compute a turn.
The details of how turns are computed were irrelevant.

Once this initial knowledge acquisition was completed, subsequent interface
negotiations were completed in a matter of hours, usually by phone or email. The
interfaces were formally defined as C structures that specified the information
passing from the planner to the plan expert and back. These were captured
iu an interface control document, and in an executable interface specification
language.

In somne cases, the planner used assumptions about the inner workings of
the plan expert to improve efticiency. For example, the legality and duration
of aturn changes slowly aud continuously over time. This alows a turn to be
moved a couple hours ahead or back inthe plan as needed without affecting its
duration or legality. The planner model and heuristics exploited this knowledge
to smplify the design and speed up the search. Assumptions of this sort were
rare, and captured explicitly in the interface control documents.

EXEC Interfaces. The interfaces between the planner and the Smart Execu-
tive (EXEC) are embodied by the timeline and token definitions included in the
planner’s model.

In order for the EXEC to execute plans, it must know what tokens can appear
in the plan and how to expand those tokens into detailed commands to the real-
time flight software. This creates a very strong coupling between EXEC and
the plauner. All of the timelines, tokens, aud their semantics were negotiated at
the beginning of each spiral before any implementation took place. However, if
the need for another tokenwas discovered during development, or some token
needed another argument, or the semantics were wrong. then the EXEC and PS
had to change their implementations accordingly. Because the tokens are such a

majorpart of tile modelimplementation, changes of this sort occurred in every
development spiral despite strong efforts to prevent them.

Several solutions to this interface issue were considered for DS1. One success-
ful approach was to use information hiding to create private token arguments.
Additional arguments arc often needed to hold values derived from other argu-
wents, or to propagate values from other tokens. The need for these arguments
often goes unnoticed until development begins in earnest. Private arguments are
seen by the planner, but are do not appearinthe plan. This allowed modelers
to add arguments for bookkeeping and propagation purposes without impacting
the EXEC. This capability was introduced at the end of the R2spiral, ancl used
with great success in R3.

Interface Management Process. To ensure disconnects were kept to a min-
imum, another requirement added by the project during the design phase of
each revision, was the development of Problem Statements, with details of each
modules’ design, interfaces and assumptions for that revision cycle. The planner
in addition also had a token dictionary with the negotiated token level inter-
faces with the EXEC. With the EXEC with which the planner representation
was tightly coupled, any agreements and assumptions in the planner’s model
were accurately document and easily accessible via a world wide web (WWW)
interface to the dictionary and disconnects cau.gilt early on.In order to avoid
disconnect with respect to the hardware specifications, especially as hardware
delivery quantified the performance, the HWMT was the central point of contact
for disseminating information.

The project also made sure that after the interface parties and the design
phase for each cycle, but before the various teamsstarted actually developing
code, aconceptreview would take place. Each team would publish a short docu-
ment detailing their design choices and the assumptions made, especidly towards
generating the scenario in the current cycle and the interface requirements. Any
disconnects found would require the project to follow through with the team in
guestion to ensure the new design actually covered the complete scenario.

3.5 Distributed Development

Because of geographically distributed teams, designdocuments and interface
agreements were exchanged primarily via a WWW interface with auto-posting
features as mentioned in [2]. The use of the Internet was decisive in successfully
collaborating over remote sites especialy when exchanging device level knowl-
edge, For instance, the HWMT would be able to post power budget allocations
over different devices which could be abstracted, parsed and built into a table for
lookup during model generation time. This would ensure that the planner mod-
els were consistent in their power budgets with those of the system engineering
and actually viable for generating robust plans.

Additionally, for short design and conceptreviews, a “meet-me” telephonic
system was in place with people calling into a central munber while accessing

the web and viewing the same document simultaneously. This greatly helped in
cutting down the time, effort aud expense of commuting to a central site.

Note also that a revision control system [3] was in place for all the source
code.

4 Open Issues

The DS1 project presented several challenges in knowledge acquisition, repre-
sentat ion, aud validat ion. The DS 1 planner proved capable of addressing these
issues, at least to the extent needed to satisfy the requirements of DS1. However,
there are a number of issues that must be resolved before this technology can be
used on a risk-iutoleraut science mission by spacecraft engineers with minimal
support from the planner development team.

4.1 Acquiring Heuristics is Difficult

Good heuristics are needed to make the planner search computationally tractable.
Heuristics tell the planner what decisions are most likely to be best at each choice
point in the planner search algorithm, thereby reducing the search. Developing a
good set of heuristics for the DS1 planner is currently very difficult, both because
it requires au intimate knowledge of how the planner search algorithm interacts
with the model, and because the planner requires exceptionally good heuristics
to achieve computational tractability. The DS1model developers had this expe-
rience and so were able to develop good heuristics, but these obstacles must be
overcome before spacecraft engineers canbe expected to develop heuristics on
their own.

One solution is to provide tools that derive heuristics automatically. Such
tools have beeu discussed in the machine learning and planning literature. Two
of the more promising approaches are to derive heuristics automatically through
a static analysis of the plan model [4] or to learn them by watching the behavior
of the planner over several runs on a given model [9]. Unfortunately, the DS1
planner requires exceptionally good heuristics to achieve tractability, and these
methods generally do not produce heuristics of that caliber. The sensitivity of the
planner to the heuristic must be reduced hefore automatic heuristic acquisition
can be feasible.

4.2 Development and Debugging Tools are Needed

Modeling could be made considerably easier with even a few simple tools. Al-
though there was insufficient time to develop them for DS1, our experience with
developing and debugging models suggested a number of desirable features. De-
veloping tools along these lines is one of our near term goals.

Plan Visualization Tools. One problem with the current system is that it is
very difficult to understand what the planner is doing, despite copious output,
This makes it difficult to isolate the decisions that lead to bugs inthe plan, or
prevent the planner from finding any plan at all. A visualization tool would help
modelers to track the planners behavior, as well asmaking it easier for new users
to understand how the planner works.

Deactivating Timelines. When debugging, the modeler often suspects the
bug is within a small family of timelines. But as the model gets more complex,
it becomes difficult to focus on the behavior of those timelines. A simple way to
address this problem is to disableirrelevant timelines. The planner ignores the
timelines and all compatibilities associated with them. This facility is rather easy
to acid, though there was insufficient time to implement given the compressed
DS1 schedule.

Model Visualization Tools. As the model gets larger, it becomes harder to
keep in mind all the constraints among the parts of the model. A model visu-
alization tool that displayed a graphic view of the model (or a subset) and the
constraints would help the modeler view this information as a whole.

4.3 Large Scale Validation of the Remote Agent Planner

Before any spacecraft is launched, its flight software must be throughly tested
and validated. The same is true for autonomous flight software. However, the
validation methods used for traditional software are not generally applicable to
autonomous software. New methods must be developed,

The planner can generate several thousand different plans, depending oi1 the
mission goats, the spacecraft state, goals generated oil-board by plan experts and
variations on the model parameters. To fully validate the planner, one must be
sure that it will generate a correct plan for every one of those possible situations,
and that the plancan be executed correctly by the EXEC.

An alternative to generating and testing several thousand plans is to use
formal methods to verify the modelsand to verify that the planner produces
plans that are consistent with the model. One approach is to capture the flight
rules and other requirements formally as constraints, and ensure that the model
is consistent with al of them,and that no constraints have been missed. A related
possibility is to convert the modelsinto a huinan-readable form and have them
approved by cognizant system engineers (domain experts).

Tools for automatically generating and validating planscan greatly reduce
this cost. One of the tools we considered for DS1but did not have time to imn-
plement was a constraint checker that tested whetherthe plan satisfied certain
correctness constraints. These include the constraints in the model, plus addi-
tional constraints derived from flight rules and other operational constraints.

5 Conclusion

DS1 will be the first deep-space spacecraft under autonomous control. The com-
plexity of this domain raised a number of important knowledge acquisition and
representation) issues, some of which wc were able to address and some of which
remain open. Issues were also raised by the fast-paced spiral development cy-
cle, the embedding of the planner within the autonomy architecture, and the
risk-management requirements of the space flight domaiun.

These issues are not unique to DS1, and are likely to occur on other projects
that require autonomous control of a complex environment. As the role of au-
tonomy increases in space exploration and other areas, so will the importance of
finding good solutions to these issues.

6 Acknowledgments

This paper describes work partialy performed at the Jet Propulsion Laboratory,
Cdifornia Institute of Technology, under contract from the National Aeronautics
and Space Administration.

This work would not have been possible without the extraordinary effort and
dedication of the rest of the Remote Agent Planning Team: Steve Chien, Charles
Fry, Sunil Mohan, Paul Morris, Gregg Rabideau, ancl David Yan.

References

1. Barry Boehm. A Spiral Model of Software Development and Enhancement.Com-
puter, pages 61-72, May 1988.

.Michael Com pton, Helen Stewart, Vinod Baya, Martha Del Alto, Bob Kanef-
sky, and Jason Vincent. Electronic collaboration for the New Millenium:
Internet-based Tools and Techniques for Sharing Information. In http://ic-
www. arc.nasa.gov/ic/projects /n mp-doc/nmp-doc-pres. pdf, 1997,

3. Per Cederqvist et. al. Concurrent Versions System. In
hitp:/fwww. loria. fr/ molli/cus-inder. html, 1996.

4. Oren Etzioni. Acquiring Search Control Knowledge via Static Analysis, Artificial

Intelligence .62, 1993.

5. G.M.Brown, D). Bernard, and R.Rasmussen. Attitude and Articulation Control for
the Cassini Spacecraft. a fault tolerance overview. In [{th AIAA/IEEE Digital
Avionics Conference, 1995.

6. Barbara Hayes-Roth. An Architecture for Adaptive Intelligent Systems. Artificial
[intelligence, 72, 1995.

.1 EEE. Proceedings of the IEEE A erospace Confe rence, Snow mass, CO, 1997.

8. Sanford Krasner and Douglas Ei. Bernard. Integrating Autonomy Technologies
into an Embedded Spacecraft System-Flight Software System Engineering for
New Millennium. In Proceedings of the [IEEE Aerospace Conference [i'].

. Steven Minton. Automatically configuring constraint satisfaction programs: A case
study. Constraints, 1(1), 1996.

10. Nicola Muscettola. 11 S1'S: Integrating planning and scheduling InMark Fox and

Monte Zweben, editors, Intelligent Scheduling. Morgan Kaufmann, 1994,

N

-3

[&=]

11.

12.

13.

14.

15.

16.

17.

Nicola Muscettola, Ben Smith, Charles Fry, Steve Chien, Karma Rajan, Gregg
Rabideau, and David Yan. On-Board Planning for New Millennium Deep Space
One Autonomy. In Proceedings of the IEEE Aerospace Conference [7].

Barney Pen, DouglasE. Bernard, Steve A. Chien, Erann Gat, Nicola Muscet-
tola, P. Pandurang Nayak, Michael D. Wagner, and Brian C. Williains. A Remote
Agent Prototype for Spacecraft Autonomy. In Proceedings of the SPIE Conference
on Optical Science, Engineering, and [nstrumentation, 1996.

Barney Pen, DouglasE. Bernard, Steve A. Chien, Erann Gat, Nicola Muscettola,
P. Pandurang Nayak, Michael D). Wagner, and Brian C. Williams. An Autonomous
Spacecraft Agent Prototype. In Proceedings of the First International Conference
on Autonomous Agents. ACM Press, 1997.

Barney Pen, ErannGat, Ron Keesing, Nicola Muscettola, and Ben Smith. Plan
Execution for Autonomous Spacecraft. In Louise Pry or, editor, Procs.of the AA Al
Fall symposium o71 Plan Execution. AAAI Press, 1996,

M. Tambe, W. Lewis Johnson, R. M. Jones, F.Koss, J. E. Laird, Paul S. Rosen-
bloom, and K. Schwamb. Intelligent Agents for Interactive Simulation Eunviron-
ments. Al Magazine, 16(1):15-39, Spring 1995.

Brian C. Williams and P.Pandurang Nayak. A model-based approach to reactive
self-configuring systems. In froes. of AA AI-96, pages 971-978, Cambridge, Mass.,
1996. AAAI Press.

Brian C. Williams and P. Pandurang Nayak. mmobile Robots, Al in the New
Millennium. Al Magazine, Fall, 1996.

This aricle was processed using the IXTpXmacro package with LLNCS style

